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Abstract 
 
This paper describes a series of efforts to integrate a cognitive modeling architecture (ACT-R) with a task network 
simulation tool (IMPRINT).  The goal is to combine the advantages of both approaches while minimizing their 
shortcomings.  We describe a number of applications in which different ways of combining the two systems are 
attempted.  The benefits of each combination scheme are described as well as their limitations.  Preliminary 
indications suggest that while each approach might be best suited for some applications, in general the highest 
degree of integration is favored as providing the best leverage of the two modeling paradigms. 
 

1. Introduction 
 
Modeling and simulation systems are designed around a particular technical approach, and with a specific purpose in 
mind.  However, once they have been designed and implemented and their users have bought into them and become 
experts at their use, their origins are often forgotten.  The systems become a prism through which every problem can 
be viewed.  As the saying goes, when all you have is a hammer, everything starts to look like a nail.  This is 
particularly true for software systems with the power and flexibility of general programming languages such that it 
seems every problem can be represented and solved within that framework.  However, just because a problem can 
be solved using a given tool doesn’t mean that it is the right tool for the job.  Systems are typically targeted, 
implicitly or explicitly, at a category of tasks for which their assumptions are well-suited, and for which they 
provide the right constraints and mechanisms to minimize effort and maximize reward (be it in terms of 
computational power or predictiveness).  Often, that category of tasks is the one that is of primary interest to their 
designers, and a natural synergy develops where the tool is designed with those tasks in mind, and the availability of 
the tool naturally leads its user to focus on tasks for which it is well suited.  However, once a substantial investment 
in terms of money, time and most importantly conceptual mind-space has been made, users naturally tend to want to 
use their favorite tool for problems for which they are not entirely well-suited.  This doesn’t imply that the system 
should be abandoned, but that it needs to be extended. 
 
There are a number of ways to extend the power of a modeling or simulation tool.  One approach (the “bag of 
tools”) is to simply use a different tool when it is better suited for that purpose.  One can add to the hammer the 
screwdriver and the wrench and have a pretty diverse tool set.  However, as applications become more complex, 
tasks often present diverse characteristics that make different tools well-suited for different aspects of the task, but 
none well-suited for all of it.  One needs some kind of combination of those tools.  Another approach (“embrace and 
extend”) is to enhance a given tool by adding new capabilities upon the existing base.  While this approach has the 
advantage of conservatively limiting disruptions to incremental additions, it runs the risk of stretching the paradigm 
upon which the tool was built to areas beyond those for which it is a natural fit, leading to a gradual deformation in 
which use becomes more and more unnatural.  The final approach (“integration”) is to extend the capabilities of the 
original tool into a new domain by integrating it with another system that has proven to be well-suited for that 
domain.  This approach has the advantage of relying upon proven technologies on both sides, but it carries the 
potential danger, if done wrong, of creating a strange and ugly hybrid.  One needs to find the right way to merge and 
leverage the capabilities of the distinct tools, without sacrificing their power.  We will  focus on this last approach. 
 
When integrating modeling and simulation tools, a number of problems arise, both technical and conceptual.  At the 
technical level, the two systems must communicate with each other.  They must exchange information about the 
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problem that they are solving, and they must synchronize their operations with each other to ensure that they work in 
concert.  The simulation community has long recognized those problems and has developed increasingly general and 
powerful techniques to solve them, e.g., the High-Level Architecture (HLA) (Kuhl et al., 1999).  In the projects we 
describe, we have not used those systems directly because of the high computational overhead and complexity 
involved, but we have used the underlying techniques to address the problems for which they were developed.  At 
the conceptual level, it is essential for the two systems being integrated to develop a natural match.  To properly 
leverage the strengths of each system, their relative concepts must connect across the integration boundary rather 
than clash with each other.  In the domain of intelligent systems, the need to integrate systems originating from 
fundamentally different paradigms (e.g. symbolic and connectionist systems) has been recognized as necessary to 
reproduce the full capabilities of human cognition.  There are however a broad array of techniques and levels of 
integration, with widely different properties and results (Wermter & Sun, 2000). 
 
In this paper we explore a number of different ways of integrating our target systems.  First, we introduce those 
systems, the Adaptive Control of Thought – Rational (ACT-R) cognitive architecture (Anderson et al., 2004) and the 
IMPRINT (IMproved Performance Research INtegration Tool) task network modeling tool (Archer & Adkins, 
1999).  We then describe three different ways of integrating those tools.  Each approach draws on a particular point 
of connection between matching concepts in the two systems.  The approaches are cumulative, with each subsequent 
one building upon the previous one but going one step further in the integration of the two systems.  For each 
approach, we lay out its motivation and underpinning principle, detail its technical implementation, briefly describe 
existing application(s) and discuss its advantages and drawbacks.  Finally, we attempt to draw general lessons about 
system integration in modeling and simulation systems. 

1.1 ACT-R 
 
ACT-R is a unified architecture of cognition developed over the last 30 years at Carnegie Mellon University.  At a 
fine-grained scale it has accounted for hundreds of phenomena from the cognitive psychology and human factors 
literature.  The most recent version, ACT-R 5.0 (Anderson et al, in press), is a modular architecture composed of 
interacting modules for declarative memory, perceptual systems such as vision and audition modules, and motor 
systems such as manual and speech modules, all synchronized through a central production system (see Figure 1).  
This modular view of cognition is a reflection both of functional constraints and of recent advances in neuroscience 
concerning the localization of brain functions.  ACT-R is also a hybrid system that combines a tractable symbolic 
level that enables the specification of complex cognitive functions with a subsymbolic level that tunes itself to the 
statistical structure of the environment to provide the graded characteristics of cognition such as adaptivity, 
robustness and stochasticity.   
 
The central part of the architecture is the production module.  A production can match the contents of any 
combination of buffers, including the goal buffer, which holds the current context and intentions, the retrieval buffer 
which holds the most recent chunk retrieved from declarative memory, the visual and auditory buffers that hold the 
current sensory information, and the manual and vocal buffers which hold the current state of the motor and speech 
module.  The highest-rated matching production is selected to effect a change in one or more buffers, which in turn 
trigger an action in the corresponding module(s).  This can be an external action (e.g., movement) or an internal 
action (e.g., requesting information from memory).  Retrieval from memory is initiated by a production specifying a 
pattern for matching in declarative memory.  Each chunk competes for retrieval, with the most active chunk being 
selected and returned in the retrieval buffer.  The activation of a chunk is a function of its past frequency and 
recency of use, the degree to which it matches the requested pattern, plus stochastic noise.  Those factors confer to 
memory retrievals, and behavior in general, desirable “soft” properties such as adaptivity to changing circumstances, 
generalization to similar situations, and variability (Anderson and Lebiere, 1998). 
 
The current goal is a central concept in ACT-R, which as a result provides strong support for goal-directed behavior.  
However, the most recent version of the architecture is less goal-focused than its predecessors by allowing 
productions to match to any source of information, including the current goal, information retrieved from declarative 
memory, objects in the focus of attention of the perceptual modules and the state of the action modules.  The content 
of many of those buffers, especially the perceptual buffers, might have changed not as a function of an internal 
request but as a result of an external event happening, perhaps unexpectedly, in the outside world.  This emphasis on 
asynchronous pattern matching of a wide variety of information sources better enables ACT-R to operate and react 



efficiently in a dynamic fast-changing world through flexible goal-directed behavior which gives equal weight to 
internal and external sources of information. 
 

 
 

Figure 1: Modular View of the ACT-R Cognitive Architecture 
 
There are three main distinctions in the ACT-R architecture.  First is the procedural-declarative distinction that 
specifies two types of knowledge structures – chunks for representing declarative knowledge and productions for 
representing procedural knowledge.  Second is the distinction between symbolic level, which contains the 
declarative and procedural knowledge, and sub-symbolic level of neural activation processes that determine the 
speed and success of access to chunks and productions.  Third is a distinction between the performance processes by 
which the symbolic and sub-symbolic layers map onto behavior and the learning processes by which these layers 
change with experience. 
 
Human cognition can be characterized as having two principal components: 1) the knowledge and procedures 
codified through specific training within the domain, and 2) the natural cognitive abilities that manifest themselves 
in tasks as diverse as memory, reasoning, planning and learning.  The fundamental advantage of an integrated 
architecture like ACT-R is that it provides a framework for modeling basic human cognition and integrating it with 
specific symbolic domain knowledge of the type specified by domain experts (e.g., rules specifying what to do in a 
given condition, a type of knowledge particularly well-suited for representation as production rules).  However, 
performance described by symbolic knowledge is mediated by parameters at the sub-symbolic level that determine 
the availability and applicability of symbolic knowledge.  Those parameters underlie ACT-R’s theory of memory, 
providing effects such as decay, priming and strengthening and make cognition adaptive, stochastic and 
approximate, capable of generalization to new situations and robustness in the face of uncertainty.  They also can 
account for the limitations of human performance, such as latencies to perform tasks and errors that can originate 
from a number of sources.  Finally, they provide a basis for representing individual differences such as those in 
working memory capacity, attentional focus, motivation and psychomotor speed as well as the impact of external 
behavior moderators such as fatigue through continuous variations of those subsymbolic architectural parameters 
that affect performance in complex tasks (e.g. Lovett, Reder and Lebiere, 1999; Taatgen, 2001). 
 
Similar computations are at work in other modules, such as the perceptual-motor modules.  Especially important are 
the parameters controlling the time course of processing as one attempts to execute a complex action, or as one 
shifts visual attention to encode a new stimuli (Byrne and Anderson, 2001).  ACT-R can predict not only direct 
quantitative measures of performance such as latency and probability of errors, but from the same mechanistic basis 
can also arise more global, indirect measures of performance such as cognitive workload.  While ACT-R has 
traditionally shied away from such meta-awareness measures and concentrated on matching directly measurable data 
such as external actions, response times and eye movements, it is by no means incapable of doing so.  Lebiere 



(2001) proposed a measure of cognitive workload in ACT-R grounded in the concept of unit task (Card, Moran and 
Newell, 1983) and validated against empirical data collected using the NASA-TLX workload assessment method. 

1.2 IMPRINT 
 
IMPRINT (Archer and Adkins 1999) was developed for Army Research Laboratory Human Research Effectiveness 
Directorate (ARL-HRED) by Micro Analysis and Design to conduct human performance analyses very early in the 
acquisition of a proposed weapon system.  It consists of a set of automated aids to assist researchers in conducting 
human performance analyses.  IMPRINT assists a user in estimating the likely performance of a new system by 
facilitating the construction of flow models that describe the scenario, the environment, and the mission that must be 
accomplished (see Figure 2).   
 

 
 

Figure 2: IMPRINT Task Network View 
 
Since it is typically easier to describe the mission by breaking it into smaller “sub” functions than trying to describe 
the mission as a whole, users build these models by breaking down the mission into a network of functions.  Each of 
the functions is then further broken down into a network consisting of other functions and tasks.  Then, a user 
estimates the time is will take to perform each task and the likelihood that it will be performed accurately.  Finally, 
by executing a simulation model of the mission multiple times, you can study the range of results that occur.  A 
description of the variability of each element can be obtained for further analysis.  Additionally, at the completion of 
the simulation, IMPRINT can compare the minimum acceptable mission performance time and accuracy to the 
predicted performance.  This will determine whether the mission met its performance requirements.  Additionally, 
IMPRINT incorporates the results of the research in cognitive workload that has been represented as computer 
algorithms (e.g., McCracken and Aldrich, 1994).  Given a description of the tasks and equipment with which 
humans are engaged, these algorithms support assessment of when workload-related performance problems are 
likely to occur, and often include identification of the quantitative impact of those problems on overall system 
performance. 



 
IMPRINT has been used successfully to predict human performance in complex and dynamic operational 
environments.  It has been shown to be easy to use, and fairly quick to apply.  It does not include an embedded 
model of cognitive or psychological processes.  Rather, it relies on the modeler to specify and implement these 
constructs.  IMPRINT was implemented in C on the Windows platform.  It includes a graphical user interface for 
model authoring, a library of existing weapon systems, expandable function libraries, data collection and display 
modules, and built-in optimization and animation tools for simulation development.  These capabilities provide an 
easy-to-use interface for the development of simulation models that can be used to study and assess human 
processes. 

1.3 Strengths and Weaknesses 
 
ACT-R and IMPRINT can be viewed as representative examples of two different approaches to human performance 
modeling (Laughery, Lebiere & Archer, in press).  ACT-R, and cognitive architectures in general, is an instance of 
first-principle models.  They operate by representing explicitly the goals, knowledge and processes of human 
cognition.  Performing complex tasks is then modeled by combining elementary actions and knowledge elements 
(the “atomic components of thought”) into increasingly complex and usually goal-directed processing.  This is a 
fundamentally bottom-up approach to modeling human performance.  IMPRINT, and task network modeling in 
general, is an instance of the reductionist approach to modeling.  These models use human-system task sequences as 
the primary organizing structure, with individual models of human behavior for each task or task element connected 
to this task sequencing structure.  The process of modeling human behavior involves taking the larger aspects of 
human-system behavior and then successively reducing them to increasingly smaller elements of behavior until a 
level of decomposition is reached at which reasonable estimates of human performance for the task elements can be 
made and represented in the network as parameters of the lower-level tasks.  This is a fundamentally top-down 
approach to modeling system and human performance. 
 
These two approaches have complementary advantages and disadvantages.  ACT-R models are distinguished by 
their high-fidelity to human behavior across a rich array of behavioral measures, including latency, probability and 
type of errors, eye and motor movements, and even functional Magnetic Resonance Imaging (fMRI) indicators of 
localized brain activity.  Because of the generality of its architecture, ACT-R can perform any task that human 
cognition can accomplish.  Moreover, because it breaks down performance on complex tasks in terms of basic steps 
of cognition whose components and mechanisms have been validated in laboratory experiments, it brings significant 
predictive power from the constraints that those processes and mechanisms put upon its performance.  However, 
with the high-fidelity come a number of requirements.  Building ACT-R models of complex tasks can be very time-
intensive.  It also requires knowledge of specific user strategies and representations that might not be available in 
many situations.  Running ACT-R models can be computationally demanding in complex simulations.  And finally, 
high-fidelity might not always be an essential requirement of the model, or it might only matter in some parts of a 
task, or it might be involved in a trade-off with other desirable qualities such as robustness. 
 
IMPRINT models, in large part because they follow a top-down methodology and are not committed to any 
particular analysis level, have opposite pros and cons.  Model development is usually tractable for even very 
complex tasks, because the decomposition level can be adjusted upward as complexity increases and low-level 
details become less important.   For the same reasons, they also tend to be very efficient to run and can be run many 
times in Monte Carlo simulations.  Because task network models are not committed to any particular mechanisms, 
they can be used to represent the system as well as the operators interacting with it, making for a very efficient, 
integrated simulation.  The main drawback of those models is that precisely because they are not committed to any 
principled mechanisms or processes, the basic tasks at the level at which the decomposition approach stops need to 
be parameterized.  Values indicating the time taken to perform the task, the probability of errors and the resulting 
workload need to be specified.  Sometimes those data are available from human performance results, but often it 
needs to be estimated, or it becomes a free parameter of the model. 
 
One could view these two approaches as fundamentally opposite and incompatible.  There are parallels to the 
symbolic-connectionist debate in the representation of human cognition.  Proponents of the connectionist approach 
argue that representing the neural processes captures the true nature of brain processes and that symbolic approaches 
are merely descriptive.  Proponents of the symbolic approach argue that they have captured the most productive 



level of abstraction to describe mental processes and that neural networks are too concerned with implementation 
details.  The two approaches in isolation have significant limitations but also complementary strengths and the 
growing field of hybrid cognitive systems has recognized that the most productive approach is to try to combine 
them.  We have adopted the same philosophy in our approach.  With a focus on the modeling of complex, real-world 
tasks, we wanted to preserve the tractability and efficiency of task network modeling, but also to augment it in 
crucial areas with the constraints and predictiveness of high-fidelity cognitive models. 
 
2. Task Level Integration 
 
2.1 Approach 
 
The first integration principle that we adopted is based upon the central organizing concepts of each approach, 
leading to a natural and powerful synergy.  IMPRINT is focused on the concept of task, how high-level functions 
break down into smaller-scale tasks and the logic by which those tasks follow each other to accomplish those 
functions.  The power of this top-down approach effectively stops at the final layer of task decomposition, at which 
point parameters like task times and execution conditions describing those tasks have to be provided by the user.  
Conversely, ACT-R is targeted at the “atomic” level of thought, the individual cognitive, perceptual and motor acts 
that take place at the sub-second level.  Those individual cognitive operations are organized together in order to 
meet goals, which provides structure and direction to the flow of cognition. 
 

 
 

Figure 3: IMPRINT-ACT-R Communication 
 
The ACT-R theory specifies in detail the performance and learning that takes place at each cycle within a specific 
goal, but has comparatively little to say about the selection of those goals.  Since goals in ACT-R closely correspond 
to tasks in IMPRINT, that weakness matches perfectly IMPRINT’s strength, which is to specify efficiently how 
complex tasks are accomplished from the coordination of simpler ones.  Conversely, since IMPRINT requires the 
characteristics of each task to be specified as part of the model, ACT-R can be used to generate those detailed 
characteristics in a constrained, first-principled manner without requiring extensive data collection.  In summary, the 
top-down and bottom-up approaches are reconciled because they meet at the same level, where one ends and the 
other starts. 
 
The structure of a hybrid IMPRINT/ACT-R model is described in Figure 3.  The IMPRINT model specifies the 
network of tasks and includes the definition of how higher-order functions are decomposed into tasks and the logic 
by which these tasks are composed together.  For certain tasks where higher behavioral fidelity is required, 
IMPRINT sends to ACT-R over a Component Object Model (COM) link the state of variables providing a detailed 



description of that task.  ACT-R then creates a goal corresponding to that task, with the components of the goal set 
to the description of the task.  The ACT-R model for that goal is then run, producing detailed cognitive predictions 
including latency of the run, whether an error occurred, etc.  Those results are then passed back over the same COM 
link to IMPRINT, which uses them as parameters of the task to advance the task network model. 
 
2.2 Application 
 
Lebiere et al (2002) described a practical application of the IMPRINT and ACT-R integration to the modeling of a 
complex and dynamic task.  Researchers with the National Aeronautics and Space Administration (NASA) were 
interested in developing models of pilot navigation while taxiing from a runway to a gate.  Research on pilot surface 
operations had shown that pilots can commit numerous errors during taxi procedures (Hooey & Foyle, 2001).  
NASA was hoping to reduce the number and range of pilot error during surface operations by using information 
displays that would improve the pilots' overall situation awareness.  The IMPRINT model handled the higher level, 
task oriented parts of the taxiing and landing operations while ACT-R handled the more cognitive and decision 
making parts of the task. 
 
The IMPRINT task network model consists of the tasks that the Captain and the First Officer perform from the time 
that the airplane approaches the airport until the airplane either commits a taxi navigation error or arrives at the 
correct terminal gate without committing an error.  During the runway roll out segment, the taxi route and gate 
information is communicated to the crew by the control tower.  This communication task shares that information 
with the ACT-R model through the COM link by calling an ACT-R goal to encode the information.  As the aircraft 
approaches each potential runway turn-off, information about whether runway signage has been noticed or 
communicated is also passed to the ACT-R model.  In turn, ACT-R passes information back to IMPRINT about 
whether to make a turn and in which direction to turn. 
 
In the spirit of concentrating on the areas where cognitive accuracy is most critical, the ACT-R model focused on 
the task of memorizing and recalling the list of taxiways to follow after landing.  This task is similar to the cognitive 
psychology task of list learning, for which an ACT-R model had already been developed (Anderson et al., 1998).  
We adapted that model to the task at hand while preserving its fundamental representation and parameters, thus 
eliminating degrees of freedom and inheriting that model’s empirical validation.  The taxiing model could reproduce 
the full range of errors observed in human pilots.  Using this integrated modeling and simulation tool allowed us to 
be able to represent a complex, dynamic task in efficient yet principled fashion and by using the strengths of each 
architecture, the modeling process was enhanced and streamlined. 
 
3. Federated Integration 
 
3.1 Approach 
 
The previous approach based on the correspondence between IMPRINT tasks and ACT-R goals has a number of 
advantages.  It allows each tool to still display its most powerful attributes while lessening its limitations.  It 
provides a natural integration based on central concepts of each paradigm.  And it allows a modular commitment to 
integration in which the degree of fidelity can be adjusted as needed.  A significant shortcoming is that the structure 
of the behavior, and in particular the organization of decisions needed to accomplish complex tasks, is left to the 
task network model, with the cognitive architecture only providing fidelity in terms of how each low-level task is 
accomplished (latency, errors, workload).  While this is fine when the task structure is relatively fixed, such as when 
it is strongly constrained by the nature of the task and formal procedures (as in the example above), it falls short 
when the decisions of how to decompose complex tasks in terms of simpler tasks and when to execute those reflects 
complex cognitive process such as adaptivity that are best represented in the cognitive model itself. 
 
One solution would be to make those decisions themselves be tasks in the task network, and thus preserve the task-
level integration paradigm described previously.  However, this would become cumbersome if the decisions 
themselves are based not upon a well-understood task structure but upon unpredictable events such as interrupts and 
other asynchronous external information.  To tailor the integration of ACT-R and IMPRINT to those kinds of 
dynamic environments, which are becoming an increasingly important domain of application, we situated the 
integration at a more basic level than the task or goal.  That level is the concept of event.  Task network models such 



as IMPRINT are based upon discrete event simulation tools like MicroSaint.  As recently as ACT-R 4.0 (Anderson 
& Lebiere, 1998), ACT-R was centered on the concept of production cycle, but recognizing the need for more 
interruptible and less goal-centered behavior to operate successfully in dynamic environments, the architecture of 
ACT-R 5.0 is based on independent modules communicating with each other and with the external world through 
asynchronous events.  Thus events are central concepts to both IMPRINT and ACT-R, and become a central concept 
in their integration as well. 
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Figure 4: IMPRINT-ACT-R Federation 
 
On this approach, IMPRINT and ACT-R relate on a level more like equal federates in an integrated simulation 
rather than the client-server relationship of task-level integration.  Following the methodology of integrated 
simulation frameworks such as HLA, we developed a communication hub called Link IMPRINT-ACT-R (LIA) that 
provides a re-usable framework for federating IMPRINT and ACT-R models (see Figure 4).  LIA facilitates data 
exchanges between IMPRINT and ACT-R and keeps them synchronized.  LIA uses an External Model Call (EMC) 
protocol over a COM link for communication.  Data exchanges are regulated by tables that specify the 
correspondence between variables and their types in the two models.  A Perl/TK front-end can be used to display the 
state of the system.  The entire communication system is re-usable across models except for a few lines of domain-
specific “glue code,” cutting down integration time from weeks or even months to just days. 
 
3.2 Application to NASA Approach and Landing 
 
Best et al. (2004) applied the “federated” modeling methodology described above to model commercial aircraft 
approach and landing scenarios and the tasks the pilots must perform.  The federated model was used to compare 
pilot procedures using current technologies with procedures using augmented displays such as a synthetic vision 
system (SVS).  The federated model represents an aircraft and its environment as well as the pilots operating the 
aircraft.  For the simulation of the aircraft, the IMPRINT federate represents the autopilot as well as the physics of 
the aircraft.  These aspects include the aircraft’s location in time and space, its deceleration, descent rate, and all 
physical changes in the aircraft including its landing gear, flap settings and air brakes.  The IMPRINT federate also 
includes the controls and displays of the aircraft including all autopilot functions, the mode control panels, the 
primary flight display, the navigational display, and an out-the-window view.  Finally, the IMPRINT federate 
handles all communication between the aircraft and air traffic control.  With these controls and displays, IMPRINT 
is able to simulate how a plane will react in its environment when these controls and displays are manipulated.  The 
ACT-R federate was used to model pilot and was composed of a set of goals, together with the procedural and 
declarative knowledge necessary to solve those goals.  The top-level goal is essentially a monitoring loop that 
repeatedly sets subgoals to check the settings of the various controls.  Each of these subgoals typically requires 
acquiring the value of one or more environmental variables (e.g., speed, altitude, etc.) by reading the instruments or 
looking out the window, then making a decision as to whether to change the controls.  The critical feature of the 
ACT-R federate is that it learns to make decisions regarding which control to monitor and which source (traditional 
control panel or SVS display) to get the information from based on its experience.  This precluded a hardwired task 
network representation of the control loop and required the delegation of that function to the cognitive architecture.  
The ACT-R federate displayed the proper sensitivity to the frequency at which controls needed to be manipulated as 
well as the relative efficiency of the various sources of information.  Using LIA, the IMPRINT model constantly 
provided updates as to the state of the aircraft and the controls, while the ACT-R model communicated its actions 
upon the controls.  A graphical representation of the simulation could have been hooked into LIA to display the 
current state of the simulation. 



 
4. Full Integration 
 
4.1 Approach 
 
The principal shortcoming of the previous approach is that, despite significant progress in automating the integration 
using LIA, it is still a relatively lengthy, duplicative and error-prone process.  Two separate models have to be 
generated, often by two separate modelers since few modelers are trained in both task network and cognitive 
modeling, and then reconciled during the integration phase, which slows down the modeling process and has the 
potential to introduce conceptual mismatches that are very difficult to track down.  It would be desirable for both 
productivity and conceptual clarity to develop both models within an integrated framework.  The two approaches 
developed previously, i.e., task-level integration and event-level integration, provide the groundwork for a fully 
integrated model.  But for full integration, the models must also be unified within a conceptual framework that relies 
on the same concept.  That final unification consists in applying the task network paradigm all the way down to the 
level of atomic cognitive steps.  At first glance, task networks and production systems (which constitute the 
symbolic basis of ACT-R) appear to have little in common.  Production systems consist of condition-action rules 
that test the current state of the system, find the best-matching rule, fire its actions, then repeat the process in a very 
loose control structure that appears to have nothing in common with rigid task networks.  But it turns out that just as 
ACT-R has evolved to become based more on events than on the production cycle, it has also evolved more of a 
control structure.  State slots in the goal and other buffer indicators often serve the purpose of enforcing a definite 
control structure upon the workings of the production system.  That structure, however, while quite explicit in the 
head of the modeler is often implicit in the conditions and actions of the production rules, leading to difficult and 
unproductive engineering of the rule set to conform to the internal conception of the modeler.  The final unification 
principle between IMPRINT and ACT-R is to apply the same task network decomposition methodology to represent 
sequential control structure at the level of individual cognitive actions. 
 

 
Figure 5: Fully Integrated IMPRINT-ACT-R Model of Sequence Learning 

 
4.2 Application to Sequence Learning 
Figure 5 presents a graphical representation of what a fully integrated ACT-R-IMPRINT model would look like (see 
Lebiere et al (2004) for details of the proposed approach).  The task is sequence learning, a cognitive psychology 
paradigm in which subjects implicitly learn the locations of a series of events on the screen.  The very simple two-
task network at the top of the screen is sufficient to generate any sequence of events.  It should be noted that this 
would traditionally be represented as carefully engineered Lisp code interacting with the ACT-R model, a process 
requiring both expert programming skills and careful integration by hand.  The simulation network exchanges events 
with a network representing the cognitive model (bottom of figure).  That network essentially represents each 



production as a task, with the logic behind the crafting of production rules made explicit in the chaining of the 
production rules.  This representation has the advantage of corresponding directly to the modeler’s mental model, 
with the additional benefit of preventing many errors by automatically supporting the basic control constructs.  For 
instance, each memory retrieval will automatically invoke a test that ensures no condition (e.g., failed retrieval) goes 
unsupported, a common source of problems that leads ACT-R models to get stuck and spin forever in a behavioral 
black hole.  It should be emphasized that despite its appearance as a task network, the cognitive model is still 
represented underneath by the very same ACT-R model, thereby preserving the established validity of the cognitive 
architecture. 
 
5. Conclusion 
 
This paper describes attempts at integrating the IMPRINT task network modeling tool and the ACT-R cognitive 
architecture.  Principles underlying that integration including task-goal equivalency, a common event-based 
framework, and an extension of the task network graphical representation to cover production systems.  Each 
integration effort can be viewed as gradually increasing the degree of integration, garnering additional advantages 
while preserving existing strengths.  A natural implication for the integration of modeling and simulation systems, 
especially in the cognitive domain, is that the deepest integration is also the most powerful. 
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